Optical and Sonar Image Classification: Wavelet Packet Transform vs Fourier Transform
نویسندگان
چکیده
To develop a noise-insensitive texture classification algorithm for both optical and underwater sidescan sonar images, we study the multichannel texture classification algorithm that uses the wavelet packet transform and Fourier transform. The approach uses a multilevel dominant eigenvector estimation algorithm and statistical distance measures to combine and select frequency channel features of greater discriminatory power. Consistently better performance of the higher level wavelet packet decompositions over those of lower levels suggests that the Fourier transform features, which may be considered as one of the highest possible levels of multichannel decomposition, may contain more texture information for classification than the wavelet transform features. Classification performance comparisons using a set of sixteen Vistex texture images with several level of white noise added and two sets of sidescan sonar images support this conclusion. The new dominant Fourier transform features are also shown to perform much better than the traditional power spectrum method. c © 2000 Academic Press
منابع مشابه
Assessment of the Wavelet Transform for Noise Reduction in Simulated PET Images
Introduction: An efficient method of tomographic imaging in nuclear medicine is positron emission tomography (PET). Compared to SPECT, PET has the advantages of higher levels of sensitivity, spatial resolution and more accurate quantification. However, high noise levels in the image limit its diagnostic utility. Noise removal in nuclear medicine is traditionally based on Fourier decomposition o...
متن کاملWavelet Transformation
Wavelet transformation is one of the most practical mathematical transformations in the field of image processing, especially image and signal processing. Depending on the nature of the multiresolution analysis, Wavelet transformation become more accessible and powerful tools. In this paper, we refer to the mathematical foundations of this transformation. Introduction: The...
متن کاملComparison of Image Approximation Methods: Fourier Transform, Cosine Transform, Wavelets Packet and Karhunen-Loeve Transform
In this paper we compare the performance of several transform coding methods, Discrete Fourier Transform, Discrete Cosine Transform, Wavelets Packet and Karhunen-Loeve Transform, commonly used in image compression systems through experiments. These methods are compared for the effectiveness as measured by rate-distortion ratio and the complexity of computation.
متن کاملDetection of Underwater Carrier-Free Pulse based on Time-Frequency Analysis
Carrier-free short pulse widely employed in UWB radar is brought into high-resolution sonar system, which has unique advantages: attaining more target information, restraining fluctuation of reverberation envelop efficiently in short-range detection and achieving accurate estimation. In essence such pulse is transiently short in time domain and wide in frequency domain, and as such it is diffic...
متن کاملTime-frequency Representation for Classification of the Transient Myoelectric Signal
An accurate and computationally efficient means of classifying myoelectric signal (MES) patterns has been the subject of considerable research effort in recent years. Effective feature extraction is crucial to reliable classification and, in the quest to improve the accuracy of transient MES pattern classification, many forms of signal representation have been suggested. It is shown that featur...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computer Vision and Image Understanding
دوره 79 شماره
صفحات -
تاریخ انتشار 2000